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ABSTRACT 
 

On-line social networks, such as Facebook, are increasingly utilized by many people. These networks allow users to 

publish details about them-selves and connect to their friends. Some of the information revealed inside these 

networks is meant to be private. Yet it is possible that corporations could use learning algorithms on released data to 

predict undisclosed private information. In this paper, we explore how to launch inference at-tacks using released 

social networking data to predict undisclosed private information about individuals. We then devise three possible 

sanitization techniques that could be used in various situations. Then, we explore the eff ectiveness of these 

techniques by implementing them on a dataset obtained from the Dallas/Fort Worth, Texas network of the Facebook 

social networking application and attempting to use methods of collective inference to discover sensitive attributes 

of the data set. We show that we can decrease the eff ectiveness of both local and relational classification algorithms 

by using the sanitization methods we described. Further, we discover a problem domain where collective inference 

degrades the performance of classification algorithms for determining private attributes. 

Keywords: Social Networks, Markov Networks, SVM, Learning Algorithm 

I. INTRODUCTION 

 

Social networks are online applications that allow their 

users to connect by means of various link types. As part 

of their offerings, these networks allow people to list 

details about themselves that are relevant to the nature of 

the network. For instance, Facebook is a general-use 

social network, so individual users list their favorite 

activities, books, and movies. Conversely, LinkedIn is a 

professional network; because of this, users specify 

details are related to their professional life (i.e. reference 

letters, previous employment, etc.) This personal 

information allows social network application providers 

a unique opportunity; direct use of this information 

could be useful to advertisers for direct marketing. 

However, in practice, privacy concerns can prevent 

these efforts [2]. This conflict between desired use of 

data and individual privacy presents an opportunity for 

social network data mining – that is, the discovery of 

information and relationships from social network data. 

The privacy concerns of individuals in a social network 

can be classified into one of two categories: privacy 

after data release, and private information leakage. 

Privacy after data release has to do with the 

identification of specific individuals in a data set 

subsequent to its release to the general public or to 

paying customers for specific usage. Perhaps the most 

illustrative example of this type of privacy breach (and 

the repercussions thereof) is the AOL search data 

scandal. In 2006, AOL released the search results from 

650,000 users for research purposes. However, these 

results had a significant number of “vanity” searches – 

searches on an individual ‟ s name, social security 

number, or address – that could then be tied back to a 

specific individual. Private information leakage, 

conversely, is related to details about an individual that 

is not explicitly stated, but, rather, is inferred through 

other details released and/or relationships to individuals 

who may express that trait. A trivial example of this type 

of information leakage is a scenario where a user, say 

John, does not enter his political affiliation because of 

privacy concerns. However, it is publicly available that 

he is a member of the College Democrats. Using this 

publicly available information regarding a general group 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

228 

membership, it is easily guessable what John‟s political 

Affiliation is. We note that this is an issue both in live 

data (i.e. currently on the server) and in any released 

data. This paper focuses on the problem of private 

information leakage for individuals as a direct result of 

their actions as being part of an online social network. 

We model an attack scenario as follows: Suppose 

Facebook wishes to release data to Electronic Arts for 

their use in advertising games to interested people. 

However, once Electronic Arts has this data, they want 

to identify the political affiliation of users in their data 

for lobbying efforts. This would obviously be a privacy 

violation of hidden details. We explore how the online 

social network data could be used to predict some 

individual private trait that a user is not willing to 

disclose (e.g. political or religious affiliation) and 

explore the effect of possible data sanitization 

approaches on preventing such private information 

leakage, while allowing the recipient of the sanitized 

data to do inference on non-private traits. 

 

II. METHODS AND MATERIAL 
 

A. Our Contributions 

 

To the best of our knowledge, this is the first paper that 

discusses the problem of sanitizing a social network to 

prevent inference of social network data and then 

examine the effectiveness of those approaches on a real-

world dataset. In order to protect privacy, we sanitize 

both details and link details. That is, deleting some 

information from a user‟s profile and removing links 

between friends. We then study the effect this has on 

combating possible inference attacks. 

 

Additionally, we present a modification of the Natıve 

Bayes classification algorithm that will use details about 

a node, as well as the node‟s link structure, to predict 

private details. We then compare the accuracy of this 

new learning method against the accuracy of the 

traditional Natıve Bayes classifier. 

 

B. Related Works  

In this paper, we touch on many areas of research that 

have been heavily studied. The area of privacy inside a 

social network encompasses a large breadth, based on 

how privacy is defined. In [1], authors consider an attack 

against an anonymized network. In their model, the 

network consists of only nodes and edges. Trait details 

are not included. The goal of the attacker is to simply 

identify people. Further, their problem is very different 

than the one considered in this paper because they 

ignore trait details and do not consider the effect of the 

existence of trait details on privacy. 

 

In [4] and [9], authors consider several ways of 

anonymizing social networks. However, our work 

focuses on inferring details from nodes in the network, 

not individually identifying individuals. 

 

Other papers have tried to infer private information 

inside social networks. In [5], authors consider ways to 

infer private information via friendship links by creating 

a Bayesian Network from the links inside a social 

network. While they crawl a real social network, 

Livejournal, they use hypothetical attributes to analyze 

their learning algorithm. Also, compared to [5], we 

provide techniques that can help with choosing the most 

effective traits or links that need to be removed for 

protecting privacy. Finally, we explore the effect of 

collective inference techniques in possible inference 

attacks. 

 

In [17], the authors propose a method of link 

reidentification. That is, they assume that the social 

network has various link types embedded, and that some 

of these link types are sensitive. Based on these 

assumptions, authors propose several methods by which 

these sensitive link types can be hidden. The general 

method by which they hide links is by either random 

elimination or by link aggregation. Instead of attempting 

to identify sensitive links between individuals, we 

attempt to identify sensitive traits of individuals by using 

a graph that initially has a full listing of friendship links. 

Also, instead of random elimination of links between 

nodes, we develop an heuristic for removing those links 

between individuals that will reduce the accuracy of our 

classifiers the most. 

 

In [3], Gross and Acquisti examine specific usage 

instances at Carnegie Mellon. They also note potential 

attacks, such as node re-identification or stalking, that 

easily accessible data on Facebook could assist with. 

They further note that while privacy controls may exist 

on the user‟s end of the social networking site, many 

individuals do not take advantage of this tool. This 
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finding coincides very well with the amount of data that 

we were able to crawl using a very simple. 

 

Table 1: Common Notations Used in the Paper 

 

Name of value variable Variable 

Node numbered i in the graph Ni 

A single detail j Dj 

All details of person ni 
D∗ ,i 

Detail j of person ni dj,i 

Friendship link between person ni and nk Fi,k 

The number of nodes with detail Dj |Dj | 

The weight of detail Di Wi 

The weight of a friend link from ni to nj Wi,j 
  

 

 

crawler on a Facebook network. We extend on their 

work by experimentally examining the accuracy of some 

types of the Demographic Re-identification that they 

propose before and after santitization. 

 

The Facebook platform‟s data has been considered in 

some other research as well. In [7], authors crawl 

Facebook‟s data and analyze usage trends among 

Facebook users, employing both profile postings and 

survey information. However, their paper focuses mostly 

on faults inside the Facebook platform. They do not 

discuss attempting to learn unrevealed traits of Facebook 

users, and do no analysis of the details of Facebook 

users. Their crawl consisted of around 70,000 Facebook 

accounts. 

 

The area of link based classification is well studied. In 

[11], authors compare various methods of link based 

classification including loopy belief propagation, mean 

field relaxation labeling, and iterative classification. 

However, their comparisons do not consider ways to 

prevent link based classification. Belief propagation as a 

means of classification is presented in [16]. In [13], 

authors present an alternative classification method 

where they build on Markov Networks. However, none 

of these papers consider ways to combat their 

classification methods. 

 

In [18], Zheleva and Getoor attempt to predict the 

private attributes of users in four real-world datasets: 

Facebook, Flickr, Dogster, and BibSonomy. In addition 

to using general relational classification, they introduce 

a groupbased classification by taking advantage of 

specific types of attributes in each of the social 

networks. However, their work does not attempt to 

sanitize the data; it only reveals the problems we also 

describe herein. 

 

Finally, in [8], we do preliminary work on the 

effectiveness of our Details, Links and Average 

classifiers and examine their effectiveness after 

removing some details from the graph. Here, we expand 

further by evaluating their effectiveness after removing 

details and links. 

 

C. Learning Methods on Social Networks 

We model a social network as an undirected graph, G = 

(V, E), where each node represents a person in the 

graph, and each link represents a friendship. Each node 

ni in the graph, has a set of details, {D1,i, . . . ,DN,i}. 

Each of these details is itself a set consisting of zero or 

more detail values. That is, suppose that we have two 

details: Hometown and Activities, which may be 

referred to as D1 and D2. Obviously Hometown is a 

binary attribute – one may only be born in one place, but 

a user also has a decision in whether to list it or not. 

Conversely, Activities could be a multivalued attribute – 

Programming, 

 

Video Games, and Reading”, for instance. In the 

facebook dataset that we use, these multivalued 

attributes are comma-separated. For clarity, we refer to a 

Detail as the actual category, say Activities. We 

represent the concept of detail values as the 2-tuple 

(Detail, expressed value). We further define a set of 

private details I, where any detail is private if Dj ∈ I. 

Consider the following illustrative. 

 

Example: 

I = {political affiliation, religion} (1) 
N = (Jane Doe) (2) 

N2 = (John Smith) (3) 

D1 = (Activities) (4) 

D1,2 = {John Smith‟s Activities } (5) 
d1,2 = {Activities, reading} (6) 
F1,2 

∈ E (7) 
F2,1 

∈ E (8) 

 

That is, we define two details to be private, a person‟s 

political affiliation and their religion (1). Then, say we 
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have two people, named Jane Doe and John Smith 

respectively (2, 3). There is a single specified Activity 

detail (4) and John Smith has specified that one of the 

activities he enjoys is reading (6). Also, John and Jane 

are friends. Note that because our graph is undirected, 

examples 7 and 8 are interchangeable, and only one is 

actually recorded. 

 

In order to evaluate the effect changing a person‟s traits 

has on their privacy, we needed to first create a learning 

method that could predict a person‟s private traits (for 

the sake of example, we assume that political affiliation 

is a private trait). For our purposes, we first attempted to 

use an SVM learning algorithm on the data, but the 

sheer size of the details involved makes this method less 

efficient for our purposes.1 Since our goal is to 

understand the feasibility of possible inference attacks 

and the effectiveness of various sanitization techniques 

combating against those attacks, we initially used a 

simple Natıve Bayes classifier. Using Natıve Bayes as 

our learning algorithm allowed us to easily scale our 

implementation to the large size and diverseness of the 

Facebook dataset. It also has the added advantage of 

allowing simple selection techniques to remove detail 

and link information when trying to hide the class of a 

network node. 

 

i. Native Bayes Classification  

Natıve Bayes is a classifier that uses Bayes‟ Theorem to 

classify objects. Given a node, ni, with m details and p 

classes to choose from, C1, . . . ,Cp, Natıve Bayes 

determines which class Cx is more likely under the 

assumption that traits are independent. That is, 

 

argmaxx[P(Cx|D1,i . . .Dm,i)] = 

argmaxx P Cx × P D1, i Cx × . . .× P Dm, i Cx (9) P D1, 

i, . . . , Dm, i 

 

Because P(D1,i, . . . ,D(m, i)) is a positive constant over 

all possible classes for any given user ni, this factor 

becomes irrelevant when probabilities are compared. 

This reduces our more difficult original problem of 

P(Cx|D1,i . . 

 

Dm,i) to the question of P(Da,i|C), for all 0 ≤ a ≤ m. 

 

 

 

ii. Native Bayes On Friendship Links 

Consider the problem of determining the class trait of 

person ni given theirfriendship links using a Natıve 

Bayes model. 

 

That is, of calculating P(Cx|Fi,1, . . . , Fi,m).Because 

there are relatively few people in the training set that 

have a friendship link to ni, the calculations for 

P(Cx|Fi,j) become extremely inaccurate. Instead, we 

decompose this relationship. Rather than having a link 

from person ni to nj , we instead consider the probability 

of having a link from ni to someone with nj ‟s traits. 

Thus, 

 

P(Cx|Fi,j) ≈ P(Cx|L1,L2, . . . , LM 

≈  P(Cx) × P(L1|Cx) × . . .× P(Lm|Cx) 

P(L1, . . . , Lm) (10) 

 

Where Ln represents a link to someone with detail Dn. 

 

iii. Weighing Friendships 

 

There is one last step to calculating P(Ci|FaFbFc). Just 

like details can have weights, so can friendship links. In 

the specific case of social networks, two friends can be 

anything from acquaintances to close friends. While 

there are many ways to weigh friendship links, the 

method we used is very easy to calculate and is based on 

the assumption that the more traits two people are 

known to share, the more unknown traits they are likely 

to share. This gives the following formula for WA,B, 

which represents the weight of a friendship link from nA 

to node nB: 

 

WA,B    =|(D1, a, . . . , TN, a) ∩ (T1, b, . . . , TN, b)|

 (11) 

 (|D ∗, a|)  

 

Equation 11 calculates the total number of traits na and 

nb share divided by the number of traits of na. 

 

Note that the weight of a friendship link is not the same 

for both people on each side of a friendship link. In other 

words, WB,A 6= WA,B. The final formula for person i 

becomes the following, where NOMR represents a 

normalization constant and P(Ci|Fa) is calculated by 

equation 10. 
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(Ci, FaFb...Fz) = P(Ci|Fa) ∗ Wa, I + . . . + P(Ci|Fz) ∗ 

Wz, I NOMR                                                              (12) 

 

The value (Ci, FaFb...Fz) is used as our approximation 

to P(Ci|FaFb...Fz) 

 

iv. Collective Inference 

 

Collective Inference is a method of classifying social 

network data using a combination of node details and 

connecting links in the social graph. Each of these 

classifiers consists of three components: Local classifier, 

relational classifier  and Collective Inference algorithm. 

 

Local classifiers are a type of learning method that is 

applied in the initial step of collective inference. 

Typically, it is a classification technique that examines 

details of a node and constructs a classification scheme 

based on the details that it finds there. For instance, the 

Natıve Bayes classifier we discussed previously is a 

standard example of Bayes classification. This classifier 

builds a model based on the details of nodes in the 

training set. It then applies this model to nodes in the 

testing set to classify them. 

 

The relational classifier is a separate type of learning 

algorithm that looks at the link structure of the graph, 

and uses the labels of nodes in the training set to develop 

a model which it uses to classify the nodes in the test set. 

Specifically, in [10], Macskassy and Provost examine 

four relational classifiers: Class-Distribution Relational 

Neighbor (cdRN), Weighted-Vote Relational 

Neighbor(wvRN), Network-only Bayes Classifier(nBC), 

and Network-only Link-based Classification (nLB). 

 

The cdRN classifier begins by determining a reference 

vector for each class that is, for each class, Cx, cdRN 

develops a vector RVx which is a description of what a 

node that is of type Cx tends to connect to. Specifically, 

RVx(a) is an average value for how often a node of class 

Cx has a link to a node of class Ca. To classify node ni, 

the algorithm builds a class vector, CVi, where CVi(a) is 

a count of how often ni has a link to a node of class Ca. 

The class probabilities are calculated by comparing CVi 

to RVx for all classes Cx. The nBC classifier uses Bayes 

Theorem to classify based only on the link structure of a 

node. That is, it defines 

P(ni = Cx|Ni)   = P(Ni|ni = Cx) × P(ni = Cx)  

  P(Ni)  

= 
 P(nj=ca|ni = Cx) × P(ni = Cx)  

nj ∈Ni 
P(nj) 

 

   

 

and then uses these probabilities to classify ni. 
 
P( ni = Cx | N | )  = P(Ni | ni = Cx) x P(ni = Cx) 

 

The nLB classifier collects the labels of the neighboring 

nodes and by means of logistic regression, uses these 

vectors to build a model. In the wvRN relational 

classifier, to classify a node ni, each of its neighbors, nj , 

is given a weight. The probability of ni being in class Cx 

is the weighted mean of the class probabilities of ni‟s 

neighbors. That is, 

 
nj ∈ Ni 

P(ni = Cx|Ni) = 1 nj ∈Ni[wi, j × P(nj = Cx)] 
   

 

where Ni is the set of neighbors of ni. 

 
As may be obvious, there are problems with each of the 

methods described above. Local classifiers consider only 

the details of the node it is classifying. Conversely, 

relational classifiers consider only the link structure of a 

node. Specifically, a major problem with relational 

classifiers is that while we may cleverly divide fully 

labeled test sets so that we ensure every node is 

connected to at least one node in the training set, real-

world data may not satisfy this strict requirement. If this 

requirement is not met, then relational classification will 

be unable to classify nodes which have no neighbors in 

the training set. Collective Inference attempts to make 

up for these deficiencies by using both local and 

relational classifiers in a precise manner to attempt to 

increase the classification accuracy of nodes in the 

network. By using a local classifier in the first iteration, 

collective inference ensures that every node will have an 

initial probabilistic classification, referred to as a prior. 

The algorithm then uses a relational classifier to re-

classify nodes. At each of these steps i > 2, the relational 

classifier uses the fully-labeled graph from step i−1 to 

classify each node in the graph. 

 

The Collective Inference method also controls the 

length of time the algorithm runs. Some algorithms 

specify a number of iterations to run, while others 
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converge after a general length of time. We choose to 

use Relaxation Labeling as described in [10]: a method 

which retains the uncertainty of our classified labels. 

That is, at each step i, the algorithm uses the probability 

estimates, not a single classified label, from step i−1 to 

calculate new probability estimates. Further, to account 

for the possibility that there may not be a convergence, 

there is a decay rate, called   set to 0.99 that discounts 

the weight of each subsequent iteration compared to the 

previous iterations. We chose to use Relaxation labeling 

because in the experiments conducted by Macskassy 

and Provost[10], Relaxation Labeling tended to be the 

best of the three collective inference methods. 

 

Each of these classifiers, including a Relaxation 

Labeling implementation, is included in NetKit-SRL2. 

As such, after we perform our sanitization techniques, 

we allow NetKit to classify the nodes to examine the 

effectiveness of our approaches. 

 

D. Data Gathering 

 
We wrote a program to crawl the Facebook network to 
gather data for our research. Written in Java 1.6, the 
crawler loads a profile, parses the details out of the 
HTML, and stores the details inside a MySQL database. 
Then, the crawler loads all friends of the current profile 
and stores the friends inside the database both as 
friendship links and as possible profiles to later crawl. 
 
Because of the sheer size of Facebook‟s social network, 
the crawler was limited to only crawling profiles inside 
the Dallas/Fort worth (DFW) network. This means that 
if two people share a common friend that is outside the 
DFW network, this is not reflected inside the database. 
Also, some people have enabled privacy restrictions on 
their profile which prevented the crawler from seeing 
their profile details. 3 The total time for the crawl was 
seven days. 

 
Because the data inside a Facebook profile is free from 
text, it is critical that the input is normalized. For 
example, favorite books of “Bible” and “The Bible” 
should be considered the same detail. Often there are 
spelling mistakes or variations on the same noun. 

 
The normalization method we use is based upon a Porter 
Stemmer presented in [14]. To normalize a detail, it was 
broken into words and each word was stemmed with a 
Porter Stemmer then recombined. Two details that 
normalized to the same value were considered the same 
for the purposes of the learning algorithm. 
 

Data Overview 
 

Table 2 gives an overview of the crawl’s data. Our total 

crawl resulted in over 167,000 profiles, almost 4.5 

million profile details, and over 3 million friendship 

links. In the graph representation, we had one large 

central group of connected nodes that had a maximum 

path length of 16. Only 22 of the collected users were 

not inside this group. As shown in table 3, a crawl of the 

Dallas regional network resulted in more conservatives 

than liberals, but not by a very large margin. 

 

Common knowledge leads us to expect a small diameter 

in social networks [15]. To reconcile this fact with the 

empirical results of a 16 degree diameter in the graph, 

note that, although popular, not every person in society 

has a Facebook account and even those that do still do 

not have friendship links to every person they know. 

 

E. Hiding Private Information 

 

In this section, we first discuss the effectiveness of our 

modified Natıve Bayes classifier when compared to a 

traditional Natıve Bayes classifier. Next, we discuss how 

to reduce the effectiveness of our classifiers by 

manipulating the detail and 

 

Table 2: General information about the data 

 

Diameter of the largest component 16 

Number of nodes in the graph 167,390 

Number of friendship links in the graph 3,342,009 

Total number of listed details in the graph 4,493,436 

Total number of unique details in the 

graph 

110,407 

Number of components in the graph 18 

 

Table 3: Odds of being Liberal or Conservative 

 

Probability of being Liberal 45 

Probability of being Conservative 55 

 

Link information, and then give an analysis of the 

experimental results of tests done on our real-world 

dataset. 
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i. Predicting Private Details 

 

In our experiments, we implemented four algorithms to 

predict the political affiliation of each user. The first 

algorithm is called “Details Only.” This algorithm uses 

Equation 9 to predict political affiliation and ignores 

friendship links. The second algorithm is called “Links 

Only.” This algorithm uses 

 

Equation 12 to predict political affiliation using 

friendship links and does not consider the details of a 

person. The third algorithm is called “Average.” The 

Average algorithm predicts a node‟s class value based 

on the following equation: 

PA(Ni = Ca) = 0.5 ∗ PD(ni = Ca) + 0.5 ∗ PL(ni = Ca) 

 

Where PD and PL are the numerical probabilities 

assigned by the Details Only and Links Only 

algorithms, respectively. The final algorithm is a 

traditional Natıve Bayes classifier, which we used as a 

basis of comparison for our proposed algorithms. 

  

ii. Manipulating Details 

 

Clearly, details can be manipulated in three ways: 

adding details to nodes, modifying existing details and 

removing details from nodes. The goal in the first case 

is to add details that may prevent learning algorithms 

from being able to infer a person’s private details. In the 

second case, the goal is to prevent leakage of “accurate” 

information by modifying profile details (e.g., 

anonymization techniques). In the third case, the goal is 

to remove those details that most help a learning 

algorithm to predict a person’s private details. 

 

In the context of a social network, removing details does 

not introduce any misleading information. This follows 

from the implied nature of listed details inside a social 

network. If a detail is missing, it simply implies that the 

person failed to mention that detail. A missing detail 

does not imply that the detail does not describe the 

person. However, if a detail is mentioned, then it is 

implied that the detail does indeed describe the person. 

Unlike anonymization techniques such as k-anonymity, 

removing details could be easily done by each 

individual profile owner. 

 

For instance, suppose there is a profile for a person 

named John Smith. On his profile, he specifies that he 

enjoys reading. He does not specify that he enjoys 

hiking. Because we specify that he likes reading, we 

know that this is factual information. However, when he 

does not specify a like for hiking, if we add the detail 

that John likes hiking, then this may be incorrect; he 

may, in fact, not like hiking. Conversely, we cannot add 

that he dislikes hiking for a similar reason. Clearly, John 

can delete the information about hiking from his profile 

easily. 

 

Because of the reasons stated above, as a starting point, 

we focused on trying to sanitize a social network by 

removing details rather than by adding false details or 

modifying existing details. We leave the exploration of 

other sanitization techniques as a future work. 4 

 

The first question we need to deal with is how to choose 

which details to remove. Using Natıve Bayes as a 

benchmark makes the process of choosing which details 

to remove very simple. 

 

Assume a person has the class value C2 out of the set of 

classes C, and this person has public details D∗ ,x. 

Argmaxy [P(Cy) ∗ P(D1,x|Cy) ∗ ... ∗ P(Dm,x|Cy)]   (13) 

 

Equation 13 identifies the learned class. Because we 

globally remove the most representative traits, we are 

able to find this based off of the equation 

Argmaxy [Cx ∀ C : P(Dy|Cx)] (14) 

 

This allows us to find the single detail that be the most 

highly indicative of a class and remove it. 

 

iii.  Manipulating Link Information 

Links can be manipulated in the same way details can. 

For the same reasons given in section 5.2, we choose to 

evaluate the effects of privacy on removing friendship 

links instead of adding fake links. Consider equation 12 

for determining detail type using friendship links. Also 

assume that there are two classes for a node, and the true 

class is C1. We want to remove links that will increase 

the likelihood of the node being in class C2. Please note 

that we define a node to be in class C2 if formula 15 is 

positive. 

 

d = ρ (C2, FaFb...Fz) − ρ (C1, FaFb...Fz) (15) 
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Therefore, we would like to maximize the value of d as 

much as possible by removing links. Define di as the 

new value for formula 15 if we remove friendship link i. 

We can compute di as 

 

di = ρ(C2,FaFb.. . Fz) − P(C2|Fj,i) ∗Wj,i - ρ(C1, FaFb.. . Fz) − 

P(C1|Fj,i) ∗Wj,i  

   

= d + (P(C1|Fj,i) − P(C2|Fj,i)) ∗Wj,i (16) 

 NOMR  

 

Because d and NORM are constants for all di, the best 

choice for i that maximizes di becomes one that 

maximizes Mi = P(C1|Fj,i)−P(C2|Fj,i))∗ Wj,i. In our 

experiments, we order the links for each node based on 

the Mi values. When we remove links, we remove those 

with the greatest Mi values. 

 

 

III. RESULTS AND DISCUSSION 
 

A. Experiments  

 

We begin by pruning the total graph of 160,000 nodes 

down to only those nodes for which we have a recorded 

political affiliation. This reduces our overall set size to 

35,000 nodes. Then, we use the ideas from Section 5.3 

to remove the 10 most telling links from every node in 

the graph. This is done by use of Equation 16 to 

determine which K links connect a node to those nodes 

that are most similar, and delete those K links. Unlike 

removing details, which is done globally, removal of 

links is done locally. We believe that this is a reasonable 

method of sanitization because the data is sanitized and 

then released to an external party. Furthermore, we do 

not attempt to modify the existing public network. 

Similarly, we stress that while the data set we use was 

composed of individuals who had their profile open to 

the public, these methods should extend to work on the 

total, mostly-private social network. 

 

We combine the Detail and Link removal methods and 

then generate test sets with both 10 details and 10 links 

removed from the graph. We refer to these sets as 0 

details, 0 links; 10 details, 0 links; 0 details, 10 links; 10 

details, 10 links removed, respectively. Following this, 

we want to gauge the accuracy of the classifiers for 

various ratios of labeled vs. unlabeled graphs. To do 

this, we collect a list of all of the available nodes, as 

discussed above. We then obtain a random permutation 

of this list using the Java function built-in to the 

Collections class. Next, we divide the list into a test set 

and a training set, based on the desired ratio. We focus 

on multiples of 10 for the accuracy percentages, so we 

generate sets of 10/90, 20/80, . . . , 90/10. We refer to 

each set by the percentage of data in the test set. We 

generate five test sets of each ratio, and run each 

experiment independently. We then take the average of 

each of these runs as the overall accuracy for that ratio. 

 

Our results, as shown in Figure 1, indicate that the 

Average Only algorithm substantially outperformed 

traditional Nave Bayes and the Links Only algorithm. 

Additionally, the Average Only algorithm generally 

performed better than the Details Only algorithm with 

the exception of the (0 details, 10 links) experiments. 

 

Also, as a verification of expected results, the Details 

Only classification accuracy only decreased 

significantly when we removed details from nodes, 

while the (0 details, *) accuracies are approximately 

equivalent. Similarly, the Link Only accuracies were 

mostly affected by the removal of links between nodes, 

while the (*, 0 links) points of interest are 

approximately equal. The difference in accuracy 

between (0 details, 0 links) and (10 details, 0 links) can 

be accountedfor by the weighting portion of the Links 

Only calculations, which depends on the similarity 

between two nodes. 
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Figure 1: Local classifier prediction accuracies by percentage 
of nodes in test set 
 

Figure 1 shows the results of our classification methods 

for various labeled node ratios. These results are 

generally consistent with what the initial results 

indicated: the Average classifier tends to outperform 

both the Links Only and the Details Only classifier, with 

the exception being Figure 1(c) , and in this case its error 

margin is only approximately 1% higher than that of 

Details only. Also, the results, with the exception of 

Figure 1(d) are generally consistent across all tests. The 

greatest variance occurs when we remove details alone. 

It may be unexpected that the Links Only classifier has 

such varied accuracies as a result. 

 

Table 4: Gender classification test 

 
# details removed # link removed Before After 
10 0 52.78 52.81 
0 10 52.75 52.30 
10 10 52.72 52.81 

 

Figure 1 Local Classification accuracy by number of 

links removed of removing details, but since our 

calculation of probabilities for that classifier uses a 

measure of similarity between people, the removal of 

details may affect that measure. 

 

Next, we examine the effects of removing the links. 

We remove K links from each node, where K ∈ [0, 

10], and again partition the nodes into a test set and 

training set of equal size. We then test the accuracy 

of the local classifier on this test set. We repeat this 

five times and then take the average of each accuracy 

for the overall accuracy of each classifier after K 

links are removed. The results of this are shown in 

Figure 2. For for K ∈ [1, 6], each link removal 

steadily decreases the accuracy of the classifier. 

Removing the seventh classifier has no noticeable 

effect, and subsequent removals only slightly 

increase the accuracy of the Links Only classifier. 

Also, due to space limitations, for the remainder of 

experiments we show only the results of the Average 

classifier. 

 

Additionally, because our motivation is to hide 

private details while still allowing an interested party 

to be able to infer information about public details, 

we take each of our data sets and build a simple 

Na¨ıve Bayes classifier to attempt to determine the 

gender of a user. The results of these tests are shown 

in Table 4. As we show, our sanitization approach 

does reduce the accuracy of inference methods on 

private data while preserving an interested party‟s 

ability to determine details that are not private. In 

fact, as can be seen from the (10, *) experiments, the 

gender classification became slightly more accurate 

after political affiliation-specific traits were 

removed. 

 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

236 

B. Relaxation Labeling 

 
We note that in the Facebook data, there are a limited 

number of „groups‟ that are highly indicative of an 

individual‟s political affiliation. When removing details, 

these are the first that are removed. We assume that 

conducting the collective inference classifiers after 

removing only one detail may generate results that are 

specific for the particular detail we lassify for. For that 

reason, we continue to consider only the removal of 0 

details and 10 details, the other lowest point on the 

classification accuracy. We also continue to consider the 

removal of 0 links and 10 links due to the marginal 

difference between the [6, 7] regionand removing 10 

links. 

 

For the experiments using relaxation labeling, we took 

the same varied ratio sets generated for the local 

classifiers in Section 6. For each, we store the 

predictions made by the Details Only, Links Only, and 

Average classifiers and use those as the priors for the 

NetKit toolkit. For each of those priors, we test the final 

accuracy of the cdRN, wvRN, nLB, and nBC classifiers. 

We do this for each of the five sets generated for each of 

the four points of interest. We then take the average of 

their accuracies for the final accuracy. 

 

 

 

 
 

Figure 3: Prediction accuracy of Relaxation Labeling 

using the Average local classifier 

 

Figure 3 shows the results of our experiments using 

Relaxation Labeling. In [10], Macskassy and Provost 

study the effects of collective inference on four real-

world datasets: IMDB, CORA, WebKB, and SEC 

filings. While they do not discuss the difference in the 

local classifier and iterative classification steps of their 

experiments, their experiments indicate that Relaxation 

Labeling almost always performs better than merely 
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predicting the most frequent class. Generally, it 

performs at near 80% accuracy, which is an increase of 

approximately 30% in their datasets. However, in our 

experiments, Relaxation Labeling typically performed 

no more than approximately 5% better than predicting 

the majority class. This is also substantially less accurate 

than using only our local classifier. 

 

As shown previously, the Average and Details Only 

local classifiers were most strongly affected by 

removing details, while the Links Only classifier and all 

relational classifiers, to various degrees, were most 

strongly affected by the removal of links. More 

interestingly, however, was that the fewer nodes that 

were in the training sets, the better the result of 

Relaxation Labeling was on most classifiers. The cdRN 

relational classifier was the single exception to this 

trend. In any of the experiments where links were 

removed, cdRN‟s accuracy only decreased as the 

percentage of nodes in the test set increased. In the 

experiments with all links present, cdRN increased in 

accuracy until 60% of nodes were in the test set, after 

which its performance drastically declined. Additionally, 

if we compare Figures 3(a) and 3(b) and Figures 3(c) 

and 3(d), we see that while the local classifier‟s 

accuracy is directly affected by the removal of details 

and/or links, this relationship is not shown by using 

relaxation labeling with the local classifiers as a prior. 

For each pair of the figures mentioned, the relational 

classifier portion of the graph remains constant, only the 

local classifier accuracy changes. From these, we see 

that the most „anonymous‟ graph, meaning the graph 

structure that has the lowest predictive accuracy, is 

achieved when we remove both details and links from 

the graph. 

 

 

IV. CONCLUSION AND FUTURE WORK 

 
We addressed various issues related to private 

information leakage in social networks. For unmodified 

social network graphs, we show that using details alone, 

one can predict class values more accurately than using 

friendship links alone. We further show that using both 

friendship links and details together gives better 

predictability than details alone. In addition, we 

explored the effect of removing traits and links in 

preventing sensitive information leakage In the process, 

we discovered situations in which collective inferencing 

does not improve on using a simple local classification 

method to identify nodes. When we combine the results 

from the collective inference implications with the 

individual results, we begin to see that removing trait 

details and friendship links together is the best way to 

reduce classifier accuracy. This is probably infeasible in 

maintaining the use of social networks. However, we 

also show that by removing only traits, we greatly 

reduce the accuracy of local classifiers, which give us 

the maximum accuracy that we were able to achieve 

through any combination of classifiers. 

 

We also draw attention to the difference in our findings 

regarding collective inference and the findings of other 

researchers. While their research has generally noticed 

an increase in classifier accuracy after using collective 

inference, we notice a sharp decrease in accuracy. This 

could have extraordinary implications for the use of 

collective inference in general. While some networks are 

extremely popular for scientific research (such as 

Facebook because of its extreme popularity), not all 

netorks can be studied so intensely. If there are specific 

types of social networks, or particular types of details 

that are naturally resistant to collective inference attacks, 

then further work could be done in an attempt to apply 

these attributes to other details. 

 

We also assumed full use of the graph information when 

deciding which details to hide. Useful research could be 

done on how individuals with limited access to the 

network could pick which traits to hide. Similarly, future 

work could be conducted in identifying key nodes of the 

graph structure to see if removing or altering these nodes 

can decrease information leakage. Another consideration 

is that social networks are vibrant, dynamic applications. 

We ignore temporal problems that may arise, such as 

those from repeated distributions of sanitized data over 

time. This would be another area of research that should 

be conducted. 
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